目的 开展南海某120 m水深大型导管架平台阴极保护数值模拟计算,研究不同温度下形成的钙镁沉积层防护性能及其对阴极保护电位、牺牲阳极电流输出和寿命的影响。方法 测量常温(25 ℃)和低温10 ℃环境下阴极保护钙质层覆盖的Q235 钢阴极极化曲线,解析边界条件,构建导管架数值模型,并进行导管架平台分温区数值模拟计算,对比常温与低温区导管架表面电位分布即牺牲阳极消耗量模拟结果。结果 导管架上部(0~-50 m),采用常温(25 ℃)钙质沉积层/钢结构为边界条件,导管架服役15 a后的电位稳定在-0.88~-0.98 V,单支阳极寿命为21~26 a。导管架下部(-50~-120 m)采用低温(10 ℃)钙质沉积层/钢结构边界条件,初期电位区间为-0.79~-0.88 V,处于欠保护状态。服役15 a后,部分区域阳极提前耗尽,不能为导管架提供有效防护。结论 对于大型导管架平台或者跨温区较大的大型海洋工程钢结构,低温区域因钙质沉积层形成速度慢、质量差而导致阴极保护电流密度需求量大,从而为整个结构物的高风险区。因此,对该区域阴极保护电流设计应充分考虑这一因素,并加强对低温区域保护电位的监测。
Abstract
To conduct a numerical simulation of the cathodic protection for a large jacket platform in the South China Sea at a water depth of 120 meters, the work aims to investigate the protective performance of calcium-magnesium deposits formed at different temperatures and their impact on cathodic protection potential, sacrificial anode current output and service life. Cathodic polarization curves of Q235 steel covered with calcareous deposits were measured at ambient (25 ℃) and low (10 ℃) temperatures. Boundary conditions were analyzed, a numerical model of the jacket structure was established, and zonal numerical simulations were performed for the platform. The simulation results of potential distribution and sacrificial anode consumption were compared between the ambient and low temperature zones. In the upper part of the jacket (0 to-50 meters), under ambient temperature (25 ℃) calcareous deposit/steel boundary conditions, the potential stabilized between-0.88 V and-0.98 V after 15 years of service, with a single anode lifespan of 21-26 years. In the lower part of the jacket (-50 to-120 meters), under low-temperature (10 ℃) calcareous deposit/steel boundary conditions, the initial potential ranged from-0.79 V to-0.88 V, indicating under-protection. After 15 years of service, anodes in some areas were depleted prematurely, failing to provide effective protection for the jacket. For large jacket platforms or other major marine steel structures spanning significant temperature ranges, low temperature zones are high-risk areas due to the slow formation and poor quality of calcareous deposits, which increases the demand for cathodic protection current density. Therefore, cathodic protection current design for these areas should fully account for this factor, and enhanced monitoring of protection potentials in low-temperature zones is recommended.
关键词
导管架平台 /
海水腐蚀 /
阴极保护 /
牺牲阳极 /
数值模拟 /
海洋工程
Key words
jacket platform /
seawater corrosion /
cathodic protection /
sacrificial anode /
numerical simulation /
marine engineering
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李阳, 王春升, 倪侃侃, 等.顺应塔平台与深水导管架平台的选择及适用性分析[J].海洋工程装备与技术, 2019, 6(S1): 414-422.
LI Y, WANG C S, NI K K, et al.Selection and Applicability Analysis of Compliant Tower Platform and Deepwater Jacket Platform[J].Ocean Engineering Equipment and Technology, 2019, 6(S1): 414-422.
[2] 李成杰, 杜敏.深海钢铁材料的阴极保护技术研究及发展[J].中国腐蚀与防护学报, 2013, 33(1): 10-16.
LI C J, DU M.Research and Development of Cathodic Protection for Steels in Deep Seawater[J].Journal of Chinese Society for Corrosion and Protection, 2013, 33(1): 10-16.
[3] KANE R D, CAYARD M S, TEBBAL S T, et al.Corrosion and Materials Challenges for Deep Water Oil and Gas Production[C]//Deep Water Technology Symposium.Houston:[s.n.], 1997.
[4] 许庆华, 吴志伟, 王晓东, 等.番禺30-1平台导管架阴极保护系统修复方案设计与安装实践[J].中国海上油气, 2014, 26(3): 122-126.
XU Q H, WU Z W, WANG X D, et al.The Repair Program Design and Installation of PY30-1 Jacket Cathodic Protection System[J].China Offshore Oil and Gas, 2014, 26(3): 122-126.
[5] 陈武, 杨洋, 龙云, 等.海洋石油平台导管架阴极保护的实施和改进[J].石油化工腐蚀与防护, 2014, 31(5): 44-47.
CHEN W, YANG Y, LONG Y, et al.Sacrificial Anode Cathodic Protection of Platform Jacket and Improvement[J].Corrosion & Protection in Petrochemical Industry, 2014, 31(5): 44-47.
[6] 尹鹏飞, 刘福国, 张国庆, 等.南海某导管架平台的阴极保护延寿修复技术方案探讨[J].腐蚀与防护, 2019, 40(11): 856-860.
YIN P F, LIU F G, ZHANG G Q, et al.Discussion on Cathodic Protection Retrofit Technical Solution for a Jacket Platform in the South China Sea[J].Corrosion and Protection, 2019, 40(11): 856-860.
[7] CARRÉ C, ZANIBELLATO A, JEANNIN M, et al.Electrochemical Calcareous Deposition in seawater.A Review[J].Environmental Chemistry Letters, 2020, 18(4): 1193-1208.
[8] CHEN S, HARTT W H.Deepwater Cathodic Protection: Part 1—Laboratory Simulation Experiments[J].Corrosion, 2002, 58(1): 38-48.
[9] CHEN S, HARTT W, WOLFSON S.Deep Water Cathodic Protection: Part 2—Field Deployment Results[J].Corrosion, 2003, 59(8): 721-732.
[10] MAO W, HARTT W H.Growth Rate of Calcareous Deposits in Seawater[J].Corrosion, 1985, 41: 317-321.
[11] BARCHICHE C, DESLOUIS C, FESTY D, et al.Characterization of Calcareous Deposits in Artificial Seawater by Impedance Techniques[J].Electrochimica Acta, 2003, 48(12): 1645-1654.
[12] NACE International.Corrosion Control of Submerged Areas of Permanently Installed Steel Offshore Structures Associated with Petroleum Production: NACE SP0176-2022[S].Houston: NACE International, 2022.
[13] DNV.Cathodic Protection Design: DNV-RP-B401[S].Oslo: DNV, 2017.
[14] 刘福国, 张伟, 王秀通, 等.海洋工程用新型牺牲阳极设计与性能研究(Ⅳ)——导管架平台阴极保护应用研究[J].装备环境工程, 2018, 15(3): 14-19.
LIU F G, ZHANG W, WANG X T, et al.Design and Performance Research of New Type Sacrificial Anode for Marine Engineering (Ⅳ)-Application of Cathodic Protection of Jacket Platform[J].Equipment Environmental Engineering, 2018, 15(3): 14-19.
[15] IZADI M, YAZDIYAN A, SHAHRABI T, et al.Influence of Temperature Variation on the Formation and Corrosion Protective Performance of Calcium Carbonate Deposits in Artificial Seawater[J].Journal of Materials Engineering and Performance, 2019, 28(7): 4221-4233.
[16] YAN J F, WHITE R E, GRIFFIN R B.Parametric Studies of the Formation of Calcareous Deposits on Cathodically Protected Steel in Seawater[J].Journal of the Electrochemical Society, 1993, 140(5): 1275-1280.
[17] LIN S H, DEXTER S.Effects of Temperature and Magnesium Ions on Calcareous Deposition[J].Corrosion, 1988, 44(9): 615-622.
[18] KINSMAN D J J, HOLLAND H D.The Co-Precipitation of Cations with CaCO3—IV.The Co-Precipitation of Sr2+ with Aragonite between 16 ℃ and 96 ℃[J].Geochimica et Cosmochimica Acta, 1969, 33(1): 1-17.
[19] 曹振宇, 宋积文, 杜敏.低温低溶解氧流动海水中阴极保护初期钙质层的形成[J].海洋湖沼通报, 2011, 33(2): 137-141.
CAO Z Y, SONG J W, DU M.Study for Calcareous Deposits under Initial Cp in Low Temperature and Low Dissolved Oxygen Content in Dynamic Seawater[J].Transactions of Oceanology and Limnology, 2011, 33(2): 137-141.
[20] 张林, 杜敏, 陈如林, 等.低温低溶解氧海水环境中X70钢阴极极化行为研究[J].腐蚀科学与防护技术, 2012, 24(2): 101-106.
ZHANG L, DU M, CHEN R L, et al.Cathodic Polarization Behavior of X70 Steel in Low Temperature and Low Dissolved Oxygen Seawater[J].Corrosion Science and Protection Technology, 2012, 24(2): 101-106.
[21] 余晓毅, 赵赫, 常炜, 等.基于数值模拟的海上平台阴极保护系统的技术研究[J].装备环境工程, 2017, 14(2): 81-84.
YU X Y, ZHAO H, CHANG W, et al.Technical Research on Cathode Protection System of Offshore Platform Based on Numerical Simulations[J].Equipment Environmental Engineering, 2017, 14(2): 81-84.
[22] 詹晖.海洋石油导管架平台外加电流阴极保护优化设计[D].青岛: 中国海洋大学, 2015.
ZHAN H.Marine Oil Jacket Platform of Impressed Current Designing Optimization for Cathodic Protection[D].Qingdao: Ocean University of China, 2015.
[23] 梅英杰.钙质沉积层对导管架平台阴极保护设计的影响研究[D].广州: 中山大学, 2022.
EI Y J.Influence of Calcareous Deposits on Cathodic Protection Design of Jacket Platforms[D].Guangzhou: Sun Yat-sen University, 2022.
[24] 中国科学院海洋研究所.海水环境复杂结构体阴极保护数值模拟计算软件: 中国, 2007SR16355[P].2007-10-22.
Institute of Oceanology, Chinese Academy of Sciences.Cathodic Protection Simulation Software of Complex Structure in Seawater Environment: China, 2007SR16355[P].2007-10-22.
[25] 国家市场监督管理总局, 国家标准化管理委员会.铝合金牺牲阳极: GB/T 4948—2025[S].北京: 中国标准出版社, 2025.
State Administration for Market Regulation, Standardization Administration of the People's Republic of China.Sacrificial Anode of Aluminum Alloy: GB/T 4948—2025[S].Beijing: Standards Press of China, 2025.
[26] 张伟, 刘福国, 尹鹏飞, 等.海洋工程用新型牺牲阳极设计与性能研究(Ⅴ)——导管架平台阴极保护设计探讨[J].装备环境工程, 2019, 16(4): 136-139.
ZHANG W, LIU F G, YIN P F, et al.New Type Sacrificial Anode Design and Performance Research Used in Marine Engineering(Ⅴ)—Cathode Protection Design of New Type Sacrificial Anode for Jacket Platform[J].Equipment Environmental Engineering, 2019, 16(4): 136-139.